The relative contributions of meaning and form to sentence processing remains an outstanding issue across the language sciences. We examine this issue by formalizing four incremental complexity metrics and comparing them against freely-available ROI timecourses. Syntax-related metrics based on top-down parsing and structural dependency-distance turn out to significantly improve a regression model, compared to a simpler model that formalizes only conceptual combination using a distributional vector-space model. This confirms the view of the anterior temporal lobes as combinatory engines that deal in both form (see e.g. Brennan et al., 2012; Rogalsky and Hickok, 2009) and meaning (see e.g., Wilson et al., 2014). This same characterization applies to a posterior temporal region in roughly ‘Wernicke’s Area.’